Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement

Author:

Danz MariORCID,Selbig WilliamORCID,Buer NicolasORCID

Abstract

Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the useful life and benefits of the system. Maintenance practices used to restore the infiltration capacity of permeable pavement were evaluated on three surfaces: Permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each of the three test plots received a similar volume of runoff and sediment load from an adjacent, impervious asphalt parking lot. Six different maintenance practices were evaluated over a four-year period: Hand-held pressure washer and vacuum, leaf blower and push broom, vacuum-assisted street cleaner, manual disturbance of PICP aggregate, pressure washing and vacuuming, and compressed air and vacuuming. Of the six practices tested, five were completed on PICP, four on PC, and two on PA. Nearly all forms of maintenance resulted in increased average surface infiltration rates. Increases ranged from 94% to 1703% for PICP, 5% to 169% for PC, and 16% to 40% for PA. Disruption of the aggregate between the joints of PICP, whether by simple hand tools or sophisticated machinery, resulted in significant (p ≤ 0.05) gains in infiltration capacity. Sediment penetrated into the solid matrix of the PC and PA, making maintenance practices using a high-pressure wash followed by high-suction vacuum the most effective for these permeable pavement types. In all instances, when the same maintenance practice was done on multiple surfaces, PICP showed the greatest recovery in infiltration capacity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3