Abstract
Nowadays, climate changes and increased water demand for human and agricultural purposes pose important questions for the groundwater management of alluvial aquifers facing the northern Italian Apennines. The large groundwater withdrawals, coupled with an overall worsening of the water quality, requires a detailed knowledge of the recharge mechanisms of these aquifers that can be useful for further adaptation measures. Concerning the recharge area of the alluvial aquifers (i.e., apices made up of gravelly materials), the present study investigates a dataset made up of 282 water samples for which stable isotopes oxygen-18 (18O) and deuterium (2H) are available. The latter involves precipitations (three rain gauges), surface water (five rivers) and groundwater (twenty wells) from five selected alluvial fans. The study confirms that the different isotopic signatures characterizing rain and river water from this area can be exploited for preliminary characterization of their significance on groundwater recharge. These results lay the foundations for the further use of a suite of environmental tracers (in which a primary role is that of water stable isotopes) at the event-scale (i.e., that of rainfall and/or flood) for eventually estimating the effective quota of recharge linked to precipitation and surface water.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry