Double-Center-Based Iris Localization and Segmentation in Cooperative Environment with Visible Illumination

Author:

Li Jiangang1,Feng Xin1

Affiliation:

1. College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

Abstract

Iris recognition has been considered as one of the most accurate and reliable biometric technologies, and it is widely used in security applications. Iris segmentation and iris localization, as important preprocessing tasks for iris biometrics, jointly determine the valid iris part of the input eye image; however, iris images that have been captured in user non-cooperative and visible illumination environments often suffer from adverse noise (e.g., light reflection, blurring, and glasses occlusion), which challenges many existing segmentation-based parameter-fitting localization methods. To address this problem, we propose a novel double-center-based end-to-end iris localization and segmentation network. Different from many previous iris localization methods, which use massive post-process methods (e.g., integro-differential operator-based or circular Hough transforms-based) on iris or contour mask to fit the inner and outer circles, our method directly predicts the inner and outer circles of the iris on the feature map. In our method, an anchor-free center-based double-circle iris-localization network and an iris mask segmentation module are designed to directly detect the circle boundary of the pupil and iris, and segment the iris region in an end-to-end framework. To facilitate efficient training, we propose a concentric sampling strategy according to the center distribution of the inner and outer iris circles. Extensive experiments on the four challenging iris data sets show that our method achieves excellent iris-localization performance; in particular, it achieves 84.02% box IoU and 89.15% mask IoU on NICE-II. On the three sub-datasets of MICHE, our method achieves 74.06% average box IoU, surpassing the existing methods by 4.64%.

Funder

Natural Science Foundation of Chongqing, China

Chongqing Technology Innovation and Application Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. A human identification technique using images of the iris and wavelet transform;Boles;IEEE Trans. Signal Process.,1998

2. Matching of dental X-ray images for human identification;Jain;Pattern Recognit.,2004

3. Efficient Iris Recognition by Characterizing Key Local Variations;Ma;IEEE Trans. Image Process.,2004

4. New Methods in Iris Recognition;Daugman;IEEE Trans. Syst. Man Cybern. Part B (Cybern.),2007

5. Daugman, J. (2009). The Essential Guide to Image Processing, Elsevier.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3