Hot-Pressing Furnace Current Monitoring and Predictive Maintenance System in Aerospace Applications

Author:

Chen Hong-Ming1,Zhang Jia-Hao2,Wang Yu-Chieh2,Chang Hsiang-Ching2,King Jen-Kai3,Yang Chao-Tung24ORCID

Affiliation:

1. Department of Applied Mathematics, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan

2. Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan

3. Innovation R&D Center, The Aerospace Industrial Development Corporation, No. 1-1, Hanxiang Rd., Xitun Dist., Taichung City 407803, Taiwan

4. Research Center for Smart Sustainable Circular Economy, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung City 407224, Taiwan

Abstract

This research combines the application of artificial intelligence in the production equipment fault monitoring of aerospace components. It detects three-phase current abnormalities in large hot-pressing furnaces through smart meters and provides early preventive maintenance. Different anomalies are classified, and a suitable monitoring process algorithm is proposed to improve the overall monitoring quality, accuracy, and stability by applying AI. We also designed a system to present the heater’s power consumption and the hot-pressing furnace’s fan and visualize the process. Combining artificial intelligence with the experience and technology of professional technicians and researchers to detect and proactively grasp the health of the hot-pressing furnace equipment improves the shortcomings of previous expert systems, achieves long-term stability, and reduces costs. The complete algorithm introduces a model corresponding to the actual production environment, with the best model result being XGBoost with an accuracy of 0.97.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Machine Learning Algorithms for Predictive Maintenance in Electrical Systems;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3