Regularization Solver Guided FISTA for Electrical Impedance Tomography

Author:

Wang Qian1,Chen Xiaoyan1ORCID,Wang Di1,Wang Zichen1,Zhang Xinyu2,Xie Na1,Liu Lili1

Affiliation:

1. School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300457, China

2. College of Engineering, University of Alabama, Tuscaloosa, AL 35487, USA

Abstract

Electrical impedance tomography (EIT) is non-destructive monitoring technology that can visualize the conductivity distribution in the observed area. The inverse problem for imaging is characterized by a serious nonlinear and ill-posed nature, which leads to the low spatial resolution of the reconstructions. The iterative algorithm is an effective method to deal with the imaging inverse problem. However, the existing iterative imaging methods have some drawbacks, such as random and subjective initial parameter setting, very time consuming in vast iterations and shape blurring with less high-order information, etc. To solve these problems, this paper proposes a novel fast convergent iteration method for solving the inverse problem and designs an initial guess method based on an adaptive regularization parameter adjustment. This method is named the Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm (RS-FISTA). The iterative solution process under the L1-norm regular constraint is derived in the LASSO problem. Meanwhile, the Nesterov accelerator is introduced to accelerate the gradient optimization race in the ISTA method. In order to make the initial guess contain more prior information and be independent of subjective factors such as human experience, a new adaptive regularization weight coefficient selection method is introduced into the initial conjecture of the FISTA iteration as it contains more accurate prior information of the conductivity distribution. The RS-FISTA method is compared with the methods of Landweber, CG, NOSER, Newton-Raphson, ISTA and FISTA, six different distributions with their optimal parameters. The SSIM, RMSE and PSNR of RS-FISTA methods are 0.7253, 3.44 and 37.55, respectively. In the performance test of convergence, the evaluation metrics of this method are relatively stable at 30 iterations. This shows that the proposed method not only has better visualization, but also has fast convergence. It is verified that the RS-FISTA algorithm is the better algorithm for EIT reconstruction from both simulation and physical experiments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3