The Opto-Mechanical–Thermal Coupling Analysis and Verification of an All-Aluminum Freeform Imaging Telescope

Author:

Gao Rong,Li Jinpeng,Wang Peng,Yu Jiadong,Xie Yongjun,Mao Xianglong

Abstract

A freeform imaging telescope (FIT) can achieve a large field of view, high resolution, light weight, and small volume at the same time. Single-point diamond turning (SPDT) is usually used to fabricate FITs, which is made entirely of aluminum alloy. Compared with a traditional telescope, whose reflector is made of glass and whose structure is aluminum, the coefficient of thermal expansion (CTE) of the structure and reflector of which is non-conforming, the CTE of the structure and reflector in an all-aluminum FIT is identical. Therefore, it was expected to theoretically have athermalization properties. In this paper, an all-aluminum off-axis three-mirror FIT was verified. The opto-mechanical–thermal coupling analysis of the FIT at −20 °C was carried out, including data processing and coordinate transformation. The reflector node deformation data of the global coordinates obtained from the finite-element analysis were converted into XY polynomial coefficients of the local coordinate system in ZEMAX. The results showed that the modulation transfer function (MTF) of the FIT at −20 °C~+40 °C still reached the diffraction limit. Moreover, the MTF of the FIT at −20 °C was 0.291 through a thermal environmental test, which was almost the same as the MTF at 22 °C. These results showed that the all-aluminum FIT could achieve athermalization properties.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference18 articles.

1. Lightweight and optimization design of rectangular reflective mirror supported in centre;Bao;Infrared Laser Eng.,2017

2. Analytical equations for a nonconfocal stigmatic three-freeform-mirror system;González-Acuña;Appl. Opt.,2022

3. Set of all possible stigmatic pairs of mirrors;RafaGonzález-Acuña;Appl. Opt.,2022

4. The optical design and fabrication of an all-aluminium unobscured two-mirror freeform image telescope;Xie;Appl. Opt.,2020

5. Technology of Freeform Surface by Using Slow Tool Servo;Yu;Mach. Des. Manuf.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3