An Asymmetric Polling-Based Optimization Model in a Dynamic Order Picking System

Author:

Yang Dan,Liu SenORCID,Zhang Zhe

Abstract

The timeliness of order deliveries seriously impacts customers’ evaluation of logistics services and, hence, has increasingly received attention. Due to the diverse and large quantities of orders under the background of electronic commerce, how to pick orders efficiently while also adapting these features has become one of the most challenging problems for distribution centers. However, previous studies have not accounted for the differences in the stochastic characteristics of order generation, which may lead to asymmetric optimization problems. With this in mind, a new asymmetric polling-based model that assumes the varying stochastic characteristics to analyze such order picking systems is put forward. In addition, two important indicators of the system, mean queue length (MQL) and mean waiting time (MWT), are derived by using probability-generating functions and the embedded Markov chain. Then, simulation experiments and a comparison of the numerical and theoretical results are conducted, showing the usefulness and practicalities of the proposed model. Finally, the paper discusses the characteristics of the novel order picking system and the influence of the MQL and MWT on it.

Funder

National Natural Science Foundation Council of China

21st Yunnan Young and Middle-Aged Academic and Technical Leaders Reserve Personnel Training Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Enhanced Bucket Brigade Order Picking System with a Conveyor;Lecture Notes in Mechanical Engineering;2024

2. Trends in order picking: a 2007–2022 review of the literature;Production & Manufacturing Research;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3