Abstract
In this paper, we numerically demonstrated a simple metamaterial for wide-angle and polarization-insensitive absorption in the visible region, which simultaneously showed a strongly suppressed absorption in the near-infrared region. Numerical simulations demonstrated that under normal incidence the proposed absorber had a high absorptivity almost over 90% in the wavelength range from 340 nm to 770 nm, while a low absorptivity less than 10% from 1 μm to 2 μm. Because a small unit cell with four-fold symmetry was utilized, the selective absorption of this nanostructure was almost independent of the incident angle and polarization of the incident light. To understand the underlying physical mechanisms, the impedance and the electromagnetic field distributions in a unit cell were analyzed. Moreover, the influence of the structural geometry parameters on the absorption spectrum was systematically studied. Our results may provide a method for using a simple nanostructure to reduce the radiative heat loss for the visible light thermal conversion, or to depress the temperature rise induced by the absorption of below-bandgap photons for photovoltaic solar cells working in the visible region.
Funder
the Natural Science Foundation of Hunan Province, China
the Scientific Research Foundation of Hunan Education Department
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献