Evaluation of Fractional-Order Pantograph Delay Differential Equation via Modified Laguerre Wavelet Method

Author:

Alderremy Aisha Abdullah,Shah RasoolORCID,Shah Nehad Ali,Aly Shaban,Nonlaopon KamsingORCID

Abstract

Wavelet transforms or wavelet analysis represent a recently created mathematical tool for assistance in resolving various issues. Wavelets can also be used in numerical analysis. In this study, we solve pantograph delay differential equations using the Modified Laguerre Wavelet method (MLWM), an effective numerical technique. Fractional derivatives are defined using the Caputo operator. The convergence of the suggested strategy is carefully examined. The suggested strategy is straightforward, effective, and simple in comparison with previous approaches. Specific examples are provided to demonstrate the current scenario’s reliability and accuracy. Compared with other methodologies, our results show a higher accuracy level. With the aid of tables and graphs, we demonstrate the effectiveness of the proposed approach by comparing results of the actual and suggested methods and demonstrating their strong agreement. For better understanding of the proposed method, we show the pointwise solution in the tables provided which confirm the accuracy at each point of the proposed method. Additionally, the results of employing the suggested method to various fractional-orders are compared, which demonstrates that when a value shifts from fractional-order to integer-order, the result approaches the exact solution. Owing to its novelty and scientific significance, the suggested technique can also be used to solve additional nonlinear delay differential equations of fractional-order.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

1. Miller, K.S., and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1993.

2. Loverro, A. Rapport Technique. Fractional Calculus: History, Definitions and Applications for the Engineer, 2004.

3. Fractional calculus in the transient analysis of viscoelastically damped structures;Bagley;AIAA J.,1985

4. On fractional calculus and fractional multipoles in electromagnetism;Engheta;IEEE Trans. Antennas Propag.,1996

5. Fractional differential equations in electrochemistry;Oldham;Adv. Eng. Softw.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3