Heat Transfer on Micro and Nanostructured Rough Surfaces Synthesized by Plasma

Author:

Dedov Alexey Victorovich,Budaev Viacheslav PetrovichORCID

Abstract

The review summarizes recent experimental results of studying heat transfer on rough surfaces synthesized by plasma. The plasma-surface interaction leads to the stochastic clustering of the surface roughness with a high specific area breaking the symmetry of the virgin surface of the initial crystalline materials. Such a surface is qualitatively different from the ordinary Brownian surface. The micro- and nanostructured surface consist of pores, craters, and nanofibers of size from tens of nanometers to tens of microns, which can provide new heat transfer properties related to a violation of the symmetry of the initial materials. In recent years, new results have been obtained in the study of heat transfer during phase change on plasma-modified surfaces in relation to energy, chemical, and cryogenic technologies. The objective of the review is to describe the specific structure of refractory metals after high-temperature plasma irradiation and the potential application of plasma processing of materials in order to create heat exchange surfaces that provide a significant intensification of two-phase heat transfer. Refractory metals with such a highly porous rough surface can be used as plasma-facing components for operation under extreme heat and plasma loads in thermonuclear and nuclear reactors, as catalysts for hydrogen production, as well as in biotechnology and biomedical applications.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3