Distances and Similarity Measures of Q-Rung Orthopair Fuzzy Sets Based on the Hausdorff Metric with the Construction of Orthopair Fuzzy TODIM

Author:

Hussain Zahid,Abbas SaharORCID,Yang Miin-ShenORCID

Abstract

In recent years, q-rung orthopair fuzzy sets (q-ROFSs), a novel and rigorous generalization of the fuzzy set (FS) coined by Yager in 2017, have been used to manage inexplicit and indefinite information in daily life with a high precision and greater accuracy than intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy sets (PFSs). The characterization of a measure of similarity between q-ROFSs is important, as they have applications in different areas, including pattern recognition, clustering, image segmentation and decision making. Therefore, this article is dedicated to the construction of a measure of similarity between q-ROFSs based on the Hausdorff metric. This is a very useful tool for establishing the similarity between two objects. Furthermore, some axiomatic definitions of the distances and similarity measures of q-ROFSs are also presented. In this article, we first present a novel method to calculate the distance between q-ROFSs based on the Hausdorff metric. We then utilize our proposed distance measure to construct the degree of similarity between q-ROFSs. We provide some properties for the proposed similarity measures. We offer several numerical examples related to pattern recognition and characterization linguistic variables to demonstrate the usefulness of the proposed similarity measures. We construct an algorithm for orthopair fuzzy TODIM (interactive and multi-criteria decision making, in Portuguese) based on our proposed methods. Finally, we use the constructed orthopair fuzzy TODIM method to address problems related to daily life settings involving multi-criteria decision making (MCDM). The numerical results show that the proposed similarity measures are suitable, applicable and well-suited to the contexts of pattern recognition, queries with fuzzy linguistic variables and MCDM.

Funder

Ministry of Science and technology (MOST) of Taiwan

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3