Abstract
The Lieb-Robinson correlation function is one way to capture the propagation of quantum entanglement and correlations in many-body systems. We consider arrays of qubits described by the tranverse-field Ising model and examine correlations as the expanding front of entanglement first reaches a particular qubit. Rather than a new bound for the correlation function, we calculate its value, both numerically and analytically. A general analytical result is obtained that enables us to analyze very large arrays of qubits. The velocity of the entanglement front saturates to a constant value, for which an analytic expression is derived. At the leading edge of entanglement, the correlation function is well-described by an exponential reduced by the square root of the distance. This analysis is extended to arbitrary arrays with general coupling and topologies. For regular two and three dimensional qubit arrays with near-neighbor coupling we find the saturation values for the direction-dependent Lieb-Robinson velocity. The symmetry of the underlying 2D or 3D lattice is evident in the shape of surfaces of constant entanglement, even as the correlations front expands over hundreds of qubits.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献