Double Contingency of Communications in Bayesian Learning

Author:

Mori Atsuhide

Abstract

In previous work, we described the geometry of Bayesian learning on a manifold. In this paper, inspired by the notion of modified double contingency of communications from sociologist Niklas Luhmann, we take two manifolds in equal parts and a potential function on their product to set up mutual Bayesian learning. Particularly, given a parametric statistical model, we consider mutual learning between two copies of the parameter space. Here, we associate the potential with the relative entropy (i.e., the Kullback–Leibler divergence). Although the mutual learning forgets all elements about the model except the relative entropy, it still substitutes for the usual Bayesian estimation of the parameter in a certain case. We propose it as a globalization of the information geometry.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference9 articles.

1. Mori, A. (2020). Global Geometry of Bayesian Statistics. Entropy, 22.

2. Parsons, T. (1951). The Social System, Free Press.

3. Geyer, R.F., and van der Zouwen, J. (1986). Sociocybernetic Paradoxes: Observation, Control and Evolution of Self-Steering Systems, Sage.

4. Amari, S. (2016). Information Geometry and Its Applications, Springer.

5. Information geometry in a global setting;Mori;Hiroshima Math. J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3