Quantum Explosions of Black Holes and Thermal Coordinates

Author:

Aref’eva IrinaORCID,Volovich Igor

Abstract

The Hawking temperature for a Schwarzschild black hole is T=1/8πM, where M is the black hole mass. This formula is derived for a fixed Schwarzschild background metric, where the mass M could be arbitrary small. Note that, for vanishing M→0, the temperature T becomes infinite. However, the Schwarzschild metric itself is regular when the black hole mass M tends to zero; it is reduced to the Minkowski metric, and there are no reasons to believe that the temperature becomes infinite. We point out that this discrepancy may be due to the fact that the Kruskal coordinates are singular in the limit of the vanishing mass of the black hole. To elucidate the situation, new coordinates for the Schwarzschild metric are introduced, called thermal coordinates, which depend on the black hole mass M and the parameter b. The parameter b specifies the motion of the observer along a special trajectory. The thermal coordinates are regular in the limit of vanishing black hole mass M. In this limit, the Schwarzschild metric is reduced to the Minkowski metric, written in coordinates dual to the Rindler coordinates. Using the thermal coordinates, the Schwarzschild black hole radiation is reconsidered, and it is found that the Hawking formula for temperature is valid only for large black holes, while for small black holes, the temperature is T=1/2π(4M+b). The thermal observer in Minkowski space sees radiation with temperature T=1/2πb, similar to the Unruh effect with non-constant acceleration. The thermal coordinates for more general spherically symmetric metrics, including the Reissner–Nordstrom, de Sitter, and anti-de Sitter, are also considered. In these coordinates, one sees a Planck distribution with constant temperature. One obtains that the thermal Planck distribution of massless particles is not restricted to the cases of black holes or constant acceleration, but is valid for any spherically symmetric metric written in thermal coordinates.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference15 articles.

1. Black hole explosions?;Hawking;Nature,1974

2. Particle creation by black holes;Hawking;Comm. Math. Phys.,1975

3. Breakdown of Predictability in Gravitational Collapse;Hawking;Phys. Rev. D,1976

4. Susskind, L., and Lindesay, J. An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe, 2004.

5. Hooft, G.’t. Available online: http://www.staff.science.uu.nl/~hooft101/. Introduction to General Relativity, 2022.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Explosions of Black Holes;Physics of Particles and Nuclei Letters;2023-06

2. A note on islands in Schwarzschild black holes;Theoretical and Mathematical Physics;2023-03

3. Об островах в черных дырах Шварцшильда;Teoreticheskaya i Matematicheskaya Fizika;2023-03

4. Complete Evaporation of Black Holes and Page Curves;Symmetry;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3