Optimized Implementation of Simpira on Microcontrollers for Secure Massive Learning

Author:

Sim Minjoo,Eum Siwoo,Kwon Hyeokdong,Jang Kyungbae,Kim Hyunjun,Kim Hyunji,Song Gyeongju,Lee Waikong,Seo HwajeongORCID

Abstract

Internet of Things (IoT) technology, in which numerous devices cooperate, has a significant impact on existing industries, such as smart factories, smart cars, and smart cities. Massive learning and computing using data collected through the IoT are also being actively performed in these industries. Therefore, the security of low-end microcontrollers used in the Internet of Things should be highly considered due to their importance. Simpira Permutation is a Permutation design using the AES algorithm designed to run efficiently on 64-bit high-end processors. With the efficient implementation of Simpira algorithm, we can ensure secure massive learning in IoT devices without performance bottleneck. In nature, Simpira exploited the part of AES algorithm. The AES algorithm is the most widely used in the world, and Intel has developed hardware accelerated AES instruction set (AES-NI) to improve the performance of encryption. By using AES-NI modules, Simpira can be improved further on high-end devices. On the other hand, low-end processors do not support AES-NI modules. For this reason, an optimized implementation of efficient Simpira should be considered. In this paper, we present an optimized implementation of Simpira on 8-bit AVR microcontrollers and 32-bit RISC-V processors, which are low-end processors that do not support AES-NI features. There are three new techniques applied. First, Addroundkey is computed efficiently through pre-computation. Second, it takes advantage of the characteristics of round keys to omit some of the operations. Third, we omit unnecessary operations added to use AES-NI features. We have carried out performance evaluations on 8-bit ATmega128 microcontrollers and 32-bit RISC-V processors, which show up-to 5.76× and 37.01× better performance enhancements than the-state-of-art reference C codes for the Simpira, respectively.

Funder

Institute for Information & communications Technology Promotion

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3