Abstract
An interesting feature that appears in the thermoelastic interaction in an orthotropic material containing cylindrical cavities is addressed in this study. For this purpose, the Finite Element Method is applied to analyze a generalized thermoelasticity theory with a relaxation time. For the development of the model, a thermal conductivity that is dependent on the temperature of the orthotropic medium was considered. The boundary condition for the internal surface of a cylindrical hollow is defined by the thermal shocks and the traction on the free surface. The nonlinear formulations of thermoelastic based on thermal relaxation time in orthotropic mediums are abbreviated using the Finite Element Method. The nonlinear equations without Kirchhoff’s transformations are presented. The results are graphically represented to demonstrate how changing thermal conductivity affects all physical values.
Funder
Transilvania University of Brasov
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献