Analytical Attitude Guidance Planner for Multiple Ground Targets Acquisitions

Author:

Carbone AndreaORCID,Spiller  DarioORCID,Curti  FabioORCID

Abstract

This paper focuses on the development of a guidance methodology for the planning of multiple ground target acquisition. Specifically, the work addresses the problem of the lack of an attitude guidance planner (AGP) aboard a remote sensing satellite. In general, the guidance is computed offline and uploaded by ground control to the space segment, i.e., satellites are not responsible for the guidance generation but they only perform control algorithms to track the guidance profiles provided by the ground segment. Overall, this limits the mission flexibility and efficiency, affecting the capability of autonomous satellite decisions. This choice is driven by the fact that the numerical algorithms used to optimize the attitude guidance trajectory require high computational effort to be implemented directly on the satellite computer. Therefore, the aim of this work is to design an analytical AGP solution to solve this problem by requiring low computational effort, making it suitable for real-time applications on on-board flight hardware. In this way, the satellite’s guidance, navigation, and control (GNC) module would become completely autonomous and independent of ground control, which will only have to indicate the targets to be acquired so that the satellite can generate its own guidance for the GNC module. The AGP analytical solution for multiple ground target acquisition is evaluated by means of phases: the first phase is named the APPG (attitude point-to-point generator) and it aims to generate the point-to-point guidance to start the ground target acquisition. The second phase is named the ATPG (attitude target pointing generator) and it generates the reference guidance to maintain the payload view axis pointing toward the ground target. The two phases joined together give the whole guidance needed to observe ground target points by means of an analytical closed-form solution.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3