Structure Determination Feasibility of Three-Dimensional Electron Diffraction in Case of Limited Data

Author:

Das Partha PratimORCID,Plana-Ruiz SergiORCID,Galanis Athanassios S.ORCID,Stewart AndrewORCID,Karavasili FotiniORCID,Nicolopoulos Stavros,Putz Holger,Margiolaki IreneORCID,Calamiotou Maria,Iezzi Gianluca

Abstract

During the last two decades, three-dimensional electron diffraction (3D ED) has undergone a renaissance, starting with the introduction of precession (Precession Electron Diffraction Tomography, PEDT) that led to variations on the idea of collecting as much of the diffraction space as possible in order to solve crystal structures from sub-micron sized crystals. The most popular of these acquisition methods is based on the continuous tilting/rotation of the crystal (so-called Microcrystal Electron Diffraction, MicroED) akin to the oscillating crystal method in X-ray crystallography, which was enabled by the increase of sensitivity and acquisition speed in electron detectors. While 3D ED data is more complex than the equivalent X-ray data due to the higher proportion of dynamical scattering, the same basic principles of what is required in terms of data quality and quantity in order to solve a crystal structure apply; high completeness, high data resolution and good signal-to-noise statistics on measured reflection intensities. However, it may not always be possible to collect data in these optimum conditions, the most common limitations being the tilt range of the goniometer stage, often due to a small pole piece gap or the use of a non-tomography holder, or the position of the sample on the TEM grid, which may be too close to a grid bar and then the specimen of interest becomes occluded during tilting. Other factors that can limit the quality of the acquired data include the limited dynamic range of the detector, which can result on truncated intensities, or the sensitivity of the crystal to the electron beam, whereby the crystallinity of the particle is changing under the illumination of the beam. This limits the quality and quantity of the measured intensities and makes structure analysis of such data challenging. Under these circumstances, traditional approaches may fail to elucidate crystal structures, and global optimization methods may be used here as an alternative powerful tool. In this context, this work presents a systematic study on the application of a global optimization method to crystal structure determination from 3D ED data. The results are compared with known structure models and crystal phases obtained from traditional ab initio structure solution methods demonstrating how this strategy can be reliably applied to the analysis of partially complete 3D ED data.

Funder

European Union Seventh Framework Programme

Fondi Ateneo of the University G. D’Annunzio

PRIN

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference93 articles.

1. Cowley, J.M. (1992). Electron Diffraction Techniques, Oxford University Press.

2. Dorset, D.L. (1995). Structural Electron Crystallography, Plenum Press.

3. Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals;Ultramicroscopy,1976

4. Electron crystallography;Acta Crystallogr. Sect. B Struct. Sci.,1996

5. Electron crystallography: Imaging and single-crystal diffraction from powders;Acta Crystallogr. Sect. A,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3