Abstract
This article focuses on the boundary layer for an axisymmetric flow and heat transfer of a nanofluid past a moving slender needle with single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). In this study, the streamlines of the flow are symmetrically located along the needle’s surface. Water and kerosene are two types of base fluids that are considered in this study. This analysis is presented with needle thickness, the ratio of velocity, nanoparticle volume fraction, and Prandtl number. The partial differential equations (PDEs) are transformed into dimensionless ordinary differential equations (ODEs) by adopting relevant similarity transformations. The bvp4c package is implemented in MATLAB R2018a to solve the governing dimensionless problems numerically. The behaviors of various sundry variables on the flow and heat transfer are observed and elaborated further. The magnitude of the skin friction, heat transfer rate, as well as velocity and temperature distributions are demonstrated in graphical form and discussed. It is worth mentioning that kerosene-based CNTs have the largest skin friction coefficient and heat transfer rate compared to water-based CNTs. The thin wall of the needle and the single-walled carbon nanotubes also contributes to high drag force and heat transfer rate on the surface. It is revealed from the stability analysis that the first solution exhibits a stable flow. Obtained results are also matched with the present data in the restricting situation, and excellent agreement is noticed.
Funder
Universiti Teknologi MARA
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献