Driving Excellence in Official Statistics: Unleashing the Potential of Comprehensive Digital Data Governance

Author:

Hassani Hossein1ORCID,MacFeely Steve2

Affiliation:

1. Research Institute of Energy Management and Planning (RIEMP), University of Tehran, Tehran 1417466191, Iran

2. Data and Analytics Division, World Health Organization, 1201 Geneva, Switzerland

Abstract

With the ubiquitous use of digital technologies and the consequent data deluge, official statistics faces new challenges and opportunities. In this context, strengthening official statistics through effective data governance will be crucial to ensure reliability, quality, and access to data. This paper presents a comprehensive framework for digital data governance for official statistics, addressing key components, such as data collection and management, processing and analysis, data sharing and dissemination, as well as privacy and ethical considerations. The framework integrates principles of data governance into digital statistical processes, enabling statistical organizations to navigate the complexities of the digital environment. Drawing on case studies and best practices, the paper highlights successful implementations of digital data governance in official statistics. The paper concludes by discussing future trends and directions, including emerging technologies and opportunities for advancing digital data governance.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference50 articles.

1. United Nations Statistical Commission (2023, May 30). Fundamental Principles of Official Statistics. Available online: https://unstats.un.org/unsd/dnss/gp/FP-New-E.pdf.

2. United Nations (2023, May 30). Principles and Recommendations for Population and Housing Censuses: Revision 3. Available online: https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Principles_and_Recommendations/Population-and-Housing-Censuses/Series_M67rev3-E.pdf.

3. World Bank (2023, May 30). Data for Better Lives: A Decade of World Development Indicators. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/34158/9781464815678.pdf.

4. Eurostat (2023, May 30). European Statistics Code of Practice. Available online: https://ec.europa.eu/eurostat/documents/3859598/11215121/KS-GQ-20-001-EN-N.pdf/7d38e7b8-48f3-314f-177d-4c5c7c92e6e3.

5. International Monetary Fund (IMF) (2023, May 30). External Sector Report: Statistical Appendix. Available online: https://www.imf.org/external/pubs/ft/scr/2014/cr1404.pdf.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3