A New Big Data Processing Framework for the Online Roadshow

Author:

Leow Kang-Ren1,Leow Meng-Chew1ORCID,Ong Lee-Yeng1ORCID

Affiliation:

1. Faculty of Information Science and Technology, Multimedia University, Jalan Ayer Keroh Lama, Melaka 75450, Malaysia

Abstract

The Online Roadshow, a new type of web application, is a digital marketing approach that aims to maximize contactless business engagement. It leverages web computing to conduct interactive game sessions via the internet. As a result, massive amounts of personal data are generated during the engagement process between the audience and the Online Roadshow (e.g., gameplay data and clickstream information). The high volume of data collected is valuable for more effective market segmentation in strategic business planning through data-driven processes such as web personalization and trend evaluation. However, the data storage and processing techniques used in conventional data analytic approaches are typically overloaded in such a computing environment. Hence, this paper proposed a new big data processing framework to improve the processing, handling, and storing of these large amounts of data. The proposed framework aims to provide a better dual-mode solution for processing the generated data for the Online Roadshow engagement process in both historical and real-time scenarios. Multiple functional modules, such as the Application Controller, the Message Broker, the Data Processing Module, and the Data Storage Module, were reformulated to provide a more efficient solution that matches the new needs of the Online Roadshow data analytics procedures. Some tests were conducted to compare the performance of the proposed frameworks against existing similar frameworks and verify the performance of the proposed framework in fulfilling the data processing requirements of the Online Roadshow. The experimental results evidenced multiple advantages of the proposed framework for Online Roadshow compared to similar existing big data processing frameworks.

Funder

Telekom Malaysia Research and Development

Multimedia University IR Fund

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3