Using Artificial Intelligence for Pattern Recognition in a Sports Context

Author:

Rodrigues Ana Cristina NunesORCID,Pereira Alexandre Santos,Mendes Rui Manuel Sousa,Araújo André Gonçalves,Couceiro Micael Santos,Figueiredo António JoséORCID

Abstract

Optimizing athlete’s performance is one of the most important and challenging aspects of coaching. Physiological and positional data, often acquired using wearable devices, have been useful to identify patterns, thus leading to a better understanding of the game and, consequently, providing the opportunity to improve the athletic performance. Even though there is a panoply of research in pattern recognition, there is a gap when it comes to non-controlled environments, as during sports training and competition. This research paper combines the use of physiological and positional data as sequential features of different artificial intelligence approaches for action recognition in a real match context, adopting futsal as its case study. The traditional artificial neural networks (ANN) is compared with a deep learning method, Long Short-Term Memory Network, and also with the Dynamic Bayesian Mixture Model, which is an ensemble classification method. The methods were used to process all data sequences, which allowed to determine, based on the balance between precision and recall, that Dynamic Bayesian Mixture Model presents a superior performance, with an F1 score of 80.54% against the 33.31% achieved by the Long Short-Term Memory Network and 14.74% achieved by ANN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Anatomy on pattern recognition;Parasher;Indian J. Comput. Sci. Eng. (IJCSE),2011

2. Monitoring and Assessment of Rehabilitation Progress on Range of Motion After Total Knee Replacement by Sensor-Based System;Huang;Sensors,2020

3. Classification in pattern recognition: A review;Sharma;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2013

4. The ARCANE project: How an ecological dynamics framework can enhance performance assessment and prediction in football;Couceiro;Sport. Med.,2016

5. Kinematics and kinetics of gait: From lab to clinic;Dicharry;Clin. Sport. Med.,2010

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3