Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China

Author:

Wang Jing12,Zhao Aiqin3,Ma Fei12ORCID,Liu Jili12,Xiao Guoju12,Xu Xing14

Affiliation:

1. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, China

2. School of Ecology and Environment, Ningxia University, Yinchuan 750021, China

3. Chinese Academy of Agricultural Engineering, Beijing 100125, China

4. School of Agriculture, Ningxia University, Yinchuan 750021, China

Abstract

The effective and safe use of FGD gypsum in agricultural land is still debated in some countries even though its effectiveness in soil management has been reported in many studies. Thus, the changes in the levels of soil salinity, alkalinity, crop yield, and other physicochemical properties in different soil types and crops after reclamation and planting with FGD gypsum over four years are evaluated in this paper. The main aim of this paper is to review the effects of six treatment technologies in addressing soil salinity and sodicity and crop production in soils, with a focus on the basic theory, key technologies, and industrialized applications. This paper also shows that soil conditions can be improved and crop yields can be increased by using FGD alone or in combination with humic acid or fertilizer. FGD gypsum plus K–Zn–Mn fertilizer increased the yield of rice by 135%. In alkaline, salinized, and secondary salinized soils, FGD gypsum combined with organic fertilizer or organic plus chemical fertilizer increased the yield of rice by 21.2% and 60.4%, the yield of sunflower by 2.4% and 23.6%, and the yield of medlar by 18.81% and 20.78%, respectively. The application of FGD gypsum also increased the salt tolerance of salt-tolerant plants. Combined with drainage, laser field levelling and tillage decreased soil salinity by more than 63.76% and increased the yield of oil sunflower by up to 96.96%. This study provides convincing evidence of the benefits of the application of the six treatments to reclaim saline–alkali soils. It is suggested that comprehensive measures should be taken to improve saline–alkaline soil.

Funder

National Key Research and Development Project

Natural Science Foundation of Ningxia Autonomous Region

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3