Progress in the Realization of µ-Brush W for Plasma-Facing Components

Author:

Dorow-Gerspach Daniel,Derra ThomasORCID,Gipperich MariusORCID,Loewenhoff Thorsten,Pintsuk GeraldORCID,Terra Alexis,Weber Thomas,Wirtz Marius,Linsmeier ChristianORCID

Abstract

During the service life of plasma-facing components, they are exposed to cyclic stationary and transient thermal loads. The former causes thermal fatigue and potentially detachment between the plasma-facing material tungsten and the structural Cu-based materials (divertor) and steel (first wall). The latter causes surface roughening, cracking, or even melting, which could drastically increase the erosion rate. Employing thin flexible W wires (Ww) with a diameter of a few hundred µm can reduce mechanical stresses, and we demonstrated their crack resilience against transient loads within first proof of principle studies. Here, status and future paths towards the large-scale production of such Ww assemblies, including techniques for realizing feasible joints with Cu, steel, or W, are presented. Using wire-based laser metal deposition, we were able to create a homogeneous and shallow infiltration of about 200 µm of the Ww assembly with steel. A high-heat-flux test on such a µ-brush (10 × 10 × 5 mm3 Ww on a ~0.5 mm thick steel layer) using 5 MW/m2 for 2000 cycles was performed without loss of any wire. Microstructural examination after and infrared analysis during the test showed no significant signs of degradation of the joint.

Funder

EUROfusion

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3