Abstract
Name ambiguity, due to the fact that many people share an identical name, often deteriorates the performance of information integration, document retrieval and web search. In academic data analysis, author name ambiguity usually decreases the analysis performance. To solve this problem, an author name disambiguation task is designed to divide documents related to an author name reference into several parts and each part is associated with a real-life person. Existing methods usually use either attributes of documents or relationships between documents and co-authors. However, methods of feature extraction using attributes cause inflexibility of models while solutions based on relationship graph network ignore the information contained in the features. In this paper, we propose a novel name disambiguation model based on representation learning which incorporates attributes and relationships. Experiments on a public real dataset demonstrate the effectiveness of our model and experimental results demonstrate that our solution is superior to several state-of-the-art graph-based methods. We also increase the interpretability of our method through information theory and show that the analysis could be helpful for model selection and training progress.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Reference33 articles.
1. A boosted-trees method for name disambiguation
2. Author name disambiguation by using deep neural network;Tran,2014
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献