Prevalence and Management of Phytopathogenic Seed-Borne Fungi of Maize

Author:

Erasto RehemaORCID,Kilasi NewtonORCID,Madege Richard Raphael

Abstract

Seed-borne fungi are solemn and deleterious pathogens capable of causing significant losses of quantity and quality losses in maize seeds and seedlings. They infect the crop at all points of the production chain from farms to stores. A yield loss of up to 50% can be encountered. Currently, chemical control of the disease is being implemented, though it is accompanied by several negative effects. This study aimed at identifying seed-borne fungi of maize and effective management options. A deep-freezing blotter method and morphological identification of the fungal species were implemented. The seed-borne fungi detected were Fusarium verticillioides, Aspergillus flavus, Aspergillus niger, Penicillium spp., Rhizopus spp., and Curvularia spp. However, in farmer-saved seeds, fungal incidences were significantly higher (p < 0.01) than in certified seeds. To identify more effective management options, the efficacy of water and ethanol-extracted bio-fungicides from three plant species, namely, neem (Azadirachta indica), ginger (Zingiber officinale), and coffee (Coffea arabica) were evaluated. From in vitro assays, ethanol-extracted bio-fungicides have a 100% inhibitory effect on fungal growth, whilst the inhibitory effects of water-extracted bio-fungicides are 55.88% (Azadirachta indica) and 46.31% (Zingiber officinale), followed by 5.15% (Coffea arabica). For the case of an in vivo assay, maize seeds treated with water-extracted bio-fungicides have higher seed germination and seedling vigor percentages. For germination, seeds treated with water-extracted bio-fungicides have higher percentages (neem and ginger (90%) followed by coffee (72.5%)) than ethanol-extracted bio-fungicides (neem (0%), ginger (2.5%), and coffee (0%)). A similar observation is made for seedling weight. Therefore, the tested water-extracted bio-fungicides can be used in treating seeds before sowing them. Further studies on effective methods of extracting bioactive compounds, and improving their shelf life, are recommended.

Funder

Sustainable Agriculture Tanzania

Publisher

MDPI AG

Reference48 articles.

1. International Seed Testing Association (ISTA) (2015). International Rules for Seed Testing, International Seed Testing Association.

2. In vivo testing of plant extracts against seed-borne pathogens;Roopa;Int. Res. J. Biol. Sci.,2012

3. Etten, J.V., López Noriega, I., Fadda, C., and Thomas, E. (2017). Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index, Bioversity International.

4. Assessing sustainability factors of farmer seed production: A case of the Good Seed Initiative project in Tanzania;Kansiime;Agric. Food Secur.,2021

5. Farmers’ Decision to Purchase Quality Declared Seeds in Kongwa District, Tanzania;Mghweno;Tanzan. J. Agric. Sci.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3