Hereditary Basis of Coat Color and Excellent Feed Conversion Rate of Red Angus Cattle by Next-Generation Sequencing Data

Author:

He Yongmeng,Huang Yongfu,Wang Shizhi,Zhang LupeiORCID,Gao Huijiang,Zhao YongjuORCID,E Guangxin

Abstract

Angus cattle have made remarkable contributions to the livestock industry worldwide as a commercial meat-type breed. Some evidence supported that Angus cattle with different coat colors have different feed-to-meat ratios, and the genetic basis of their coat color is inconclusive. Here, genome-wide association study was performed to investigate the genetic divergence of black and red Angus cattle with 63 public genome sequencing data. General linear model analysis was used to identify genomic regions with potential candidate variant/genes that contribute to coat color and feed conversion rate. Results showed that six single nucleotide polymorphisms (SNPs) and two insertion–deletions, which were annotated in five genes (ZCCHC14, ANKRD11, FANCA, MC1R, and LOC532875 [AFG3-like protein 1]), considerably diverged between black and red Angus cattle. The strongest associated loci, namely, missense mutation CHIR18_14705671 (c.296T > C) and frameshift mutation CHIR18_12999497 (c.310G>-), were located in MC1R. Three consecutive strongly associated SNPs were also identified and located in FANCA, which is widely involved in the Fanconi anemia pathway. Several SNPs of highly associated SNPs was notably enriched in ZCCHC14 and ANKRD11, which are related to myofiber growth and muscle development. This study provides a basis for the use of potential genetic markers to be used in future breeding programs to improve cattle selection in terms of coat color and meat phenotype. This study is also helpful to understand the hereditary basis of different coat colors and meat phenotypes. However, the putative candidate genes or markers identified in this study require further investigation to confirm their phenotypic causality and potential effective genetic relationships.

Funder

Chongqing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3