A Two-Hop mmWave MIMO NR-Relay Nodes to Enhance the Average System Throughput and BER in Outdoor-to-Indoor Environments

Author:

Verdecia-Peña RandyORCID,Alonso José I.ORCID

Abstract

Millimeter-Wave (mmWave) bands are receiving enormous attention in 5G mobile communications, due to the capability to provide a multi-gigabit transmission rate. In this paper, a two-hop architecture for 5G communications with the capacity to support high end-to-end performance due to the use of Relay Nodes (RNs) in mmWave-bands is presented. One of the novelties of the paper is the implementation of Amplify-and-Forward (A&F) and Decode-and-Forward (D&F) RNs along with a mmWave-band transceiver chain (Tx/Rx). In addition, two approaches for channel estimation were implemented at the D&F RN for decoding the backhaul link. One of them assumes complete knowledge of the channel (PCE), and the other one performs the channel estimation through Least Square (LS) estimator. A large number of simulations, using MATLABTM and SimulinkTM software, were performed to verify the potential benefits of the proposal two-hop 5G architecture in an outdoor-to-indoor scenario. The main novelty in performing these simulations is the use of signals with 5G features, as DL-SCH transport channel coding, PDSCH generation, and SS Burst generation, which is another of the main contributions of the paper. On the other hand, mmWave transmitter and receiver chains were designed and implemented with off-the shelf components. The simulations show that the two-hop network substantially improves the Key Performance Indicators (KPIs), Bit Error Rate (BER), and Throughput, in the communications between the logical 5G Radio Node (gNodeB), and the New Radio User Equipment (NR-UE). For example, a throughput improvement of 22 Mbps is obtained when a 4 × 4 × 2 MIMO D&F with LS architecture is used versus a SISO D&F with PCE architecture for Signal-to-Noise Ratio (SNR) = 20 dB and 64-QAM signal. This improvement reaches 96 Mbps if a 256-QAM signal is considered. The improvement in BER is 11 dB and 10.5 dB, respectively, for both cases. This work also shows that the obtained results with D&F RNs are better than with A&F RNs. For example, an improvement of 17 Mbps in the use of SISO D&F with LS vs. SISO A&F, for the 64-QAM signal is obtained. Besides, this paper constitutes a first step to the implementation of a mmWave MIMO 5G cooperative network platform.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An in-depth assessment of the physical layer performance in the proposed B5G framework;Ad Hoc Networks;2024-11

2. A Comprehensive Ceiling Analysis of the Physical Layer Performance of the 5G NR;Proceedings of the Int'l ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks;2023-10-30

3. Hardware Platform for Layer 2 IAB Architecture based on a Transceiver Manufactured at 26 GHz;2023 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2023-09-04

4. Ultra-Wideband MIMO Antennas: Latest Advances in Design and Technology;2023 Second International Conference on Trends in Electrical, Electronics, and Computer Engineering (TEECCON);2023-08-23

5. Performance Enhancement of Cooperative MIMO-NOMA Systems Over Sub-6 GHz and mmWave Bands;Journal of Telecommunications and Information Technology;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3