Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images

Author:

Zhu LinlinORCID,Han Yu,Xi Xiaoqi,Li Lei,Yan Bin

Abstract

In computed tomography (CT) images, the presence of metal artifacts leads to contaminated object structures. Theoretically, eliminating metal artifacts in the sinogram domain can correct projection deviation and provide reconstructed images that are more real. Contemporary methods that use deep networks for completing metal-damaged sinogram data are limited to discontinuity at the boundaries of traces, which, however, lead to secondary artifacts. This study modifies the traditional U-net and adds two sinogram feature losses of projection images—namely, continuity and consistency of projection data at each angle, improving the accuracy of the complemented sinogram data. Masking the metal traces also ensures the stability and reliability of the unaffected data during metal artifacts reduction. The projection and reconstruction results and various evaluation metrics reveal that the proposed method can accurately repair missing data and reduce metal artifacts in reconstructed CT images.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3