Energy Loss Impact in Electrical Smart Grid Systems in Australia

Author:

Zaghwan AshrafORCID,Gunawan IndraORCID

Abstract

This research draws attention to the potential and contextual influences on energy loss in Australia’s electricity market and smart grid systems. It further examines barriers in the transition toward optimising the benefit opportunities between electricity demand and electricity supply. The main contribution of this study highlights the impact of individual end-users by controlling and automating individual home electricity profiles within the objective function set (AV) of optimum demand ranges. Three stages of analysis were accomplished to achieve this goal. Firstly, we focused on feasibility analysis using ‘weight of evidence’ (WOE) and ‘information value’ (IV) techniques to check sample data segmentation and possible variable reduction. Stage two of sensitivity analysis (SA) used a generalised reduced gradient algorithm (GRG) to detect and compare a nonlinear optimisation issue caused by end-user demand. Stage three of analysis used two methods adopted from the machine learning toolbox, piecewise linear distribution (PLD) and the empirical cumulative distribution function (ECDF), to test the normality of time series data and measure the discrepancy between them. It used PLD and ECDF to derive a nonparametric representation of the overall cumulative distribution function (CDF). These analytical methods were all found to be relevant and provided a clue to the sustainability approach. This study provides insights into the design of sustainable homes, which must go beyond the concept of increasing the capacity of renewable energy. In addition to this, this study examines the interplay between the variance estimation of the problematic levels and the perception of energy loss to introduce a novel realistic model of cost–benefit incentives. This optimisation goal contrasted with uncertainties that remain as to what constitutes the demand impact and individual house effects in diverse clustering patterns in a specific grid system. While ongoing effort is still needed to look for strategic solutions for this class of complex problems, this research shows significant contextual opportunities to manage the complexity of the problem according to the nature of the case, representing dense and significant changes in the situational complexity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3