Abstract
Controlling energy consumption to reduce greenhouse gas emissions has become a global consensus in response to the challenge of climate change. Most studies have focused on energy consumption control in a single region; however, high-resolution analysis of energy consumption and personalized energy policy-making, for multiple regions with differentiated development, have become a complicated challenge. Using the logarithmic mean Divisia index I (LMDI) decomposition method based on energy allocation analysis (EAA), this paper aims to establish a standard paradigm for a high-resolution analysis of multi-regional energy consumption and provide suggestions for energy policy-making, taking 29 provinces of China as the sample. The process involved three steps: (1) determination of regional priorities of energy consumption control by EAA, (2) revealing regional disparity among the driving forces of energy consumption growth by LMDI, and (3) deriving policy implications by comparing the obtained results with existing policies. The results indicated that 29 provinces can be divided into four groups, with different priorities of energy consumption control according to the patterns of coal flows. Most provinces have increasing levels of energy consumption, driven by increasing per capita GDP and improving living standards, while its growth is restrained by decreasing end-use energy intensity, improving energy supply efficiency, and optimization of industrial structures. However, some provinces are not following these trends to the same degree. This indicates that policy-makers must pay more attention to the different driving mechanisms of energy consumption growth among provinces.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development