Catalytic and Non-Catalytic Treatment of Industrial Wastewater under the Exposure of Non-Thermal Plasma Jet

Author:

Shukrullah Shazia,Bashir Warda,Altaf Noor Ul Huda,Khan Yasin,Al-Arainy Abdulrehman Ali,Sheikh Toqeer Ahmad

Abstract

Freshwater is only 2.5% of the total water on the Earth and rest is contaminated or brackish. Various physical and chemical techniques are being used to purify the contaminated water. This study deals with catalytic plasma treatment of contaminated water collected from different sites of Faisalabad-Pakistan. A non-thermal DC plasma jet technique was used to treat the water samples in the presence of TiO2 catalyst. The plasma-assisted catalytic treatment introduced some oxidative species (O3, H2O2, HO2−, OH−) in the water. These species reacted with pollutants and cause the degradation of harmful contaminants, especially dyes. The degradation of dye sample during plasma treatment was more pronounced as compared to other samples. pH, conductivity and TDS of dye containing sample decreased after catalytic plasma treatment. The degradation of organic pollutants increased due to presence of several oxidants, such as TiO2, ferrous ions and hydrogen peroxide. FT-IR analysis revealed the degradation of some functional groups during treatment process and confirmed the effectiveness of the process. The residue of the treated samples was consisted of amines, amides and N-H functional groups. XRD analysis showed the presence of Alite, Ferrite, aluminate, Si, S and some heavy metals in the residue. The effect of plasma treatment on activity of gram-negative Escherichia coli (E. coli) bacteria in water was also checked. The bacterial activity was reduced by almost 50% after 2 min of plasma treatment.

Funder

King Saud University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference32 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cold plasma turns mixed-dye-contaminated wastewater bio-safe;Environmental Research;2024-04

2. Plasma in textile wastewater treatment;Advances in Plasma Treatment of Textile Surfaces;2024

3. Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review;Nano-Structures & Nano-Objects;2023-10

4. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles;Scientific Reports;2022-06-14

5. Plasma Degradation of Synthetic Dyes;Sustainable Textiles: Production, Processing, Manufacturing & Chemistry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3