Effects of the Microbubble Generation Mode on Hydrodynamic Parameters in Gas–Liquid Bubble Columns

Author:

Ning Shanglei,Jin HaiboORCID,He GuangxiangORCID,Ma Lei,Guo XiaoyanORCID,Zhang Rongyue

Abstract

The hydrodynamics parameters of microbubbles in a bubble column were studied in an air–water system with a range of superficial gas velocity from 0.013 to 0.100 m/s using a differential pressure transmitter, double probe optical fiber probe, and electrical resistance tomography (ERT) technique. Two kinds of microbubble generators (foam gun, sintered plate) were used to generate microbubbles in the bubble column with a diameter of 90 mm, and to compare the effects of different foaming methods on the hydrodynamics parameters in the bubble column. The hydrodynamic behavior of the homogeneous regime and the transition regime was also studied. The results show that, by changing the microbubble-generating device, the hydrodynamic parameters in the column are changed, and both microbubble-generating devices can obtain a higher gas holdup and a narrower chord length distribution. When the foam gun is used as the gas distributor, a higher gas holdup and a narrower average bubble chord length can be obtained than when the sintered plate is used as the gas distributor. In addition, under different operating conditions, the relative frequency distribution of the chord length at different radial positions is mainly concentrated in the interval of 0–5 mm, and it is the highest in the center of the column.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3