Revisiting the Statistical Scaling of Annual Discharge Maxima at Daily Resolution with Respect to the Basin Size in the Light of Rainfall Climatology

Author:

Perdios AnastasiosORCID,Langousis AndreasORCID

Abstract

Over the years, several studies have been carried out to investigate how the statistics of annual discharge maxima vary with the size of basins, with diverse findings regarding the observed type of scaling (i.e., simple scaling vs. multiscaling), especially in cases where the data originated from regions with significantly different hydroclimatic characteristics. In this context, an important question arises on how one can effectively conclude on an approximate type of statistical scaling of annual discharge maxima with respect to the basin size. The present study aims at addressing this question, using daily discharges from 805 catchments located in different parts of the United Kingdom, with at least 30 years of recordings. To do so, we isolate the effects of the catchment area and the local rainfall climatology, and examine how the statistics of the standardized discharge maxima vary with the basin scale. The obtained results show that: (a) the local rainfall climatology is an important contributor to the observed statistics of peak annual discharges, and (b) when the effects of the local rainfall climatology are properly isolated, the scaling of the standardized annual discharge maxima with the area of the catchment closely follows that commonly met in actual rainfields, deviating significantly from the simple scaling rule. The aforementioned findings explain to a large extent the diverse results obtained by previous studies in the absence of rainfall information, shedding light on the approximate type of scaling of annual discharge maxima with the basin size.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference88 articles.

1. Flood-frequency analyses;Dalrymple;U.S. Geol. Surv. Water Supply Pap.,1960

2. Factors influencing the occurrence of floods in a humid region of diverse terrain;Benson;U.S. Geol. Surv. Water Supply Pap.,1962

3. Multiscaling properties of spatial rainfall and river flow distributions

4. Multiscaling theory of flood peaks: Regional quantile analysis

5. Scale and scaling in hydrology (Habilitationsschrift);Blöschl,1996

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3