A Method for Estimating the Hydrodynamic Values of Anastomosing Rivers: The Expression of Channel Morphological Parameters

Author:

Wang Suiji12ORCID

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

An anastomosing river is a stable multiple-channel system separated by inter-channel wetlands, and there are serious difficulties in observing the hydrodynamics of such river patterns in situ. Therefore, there are few reports on the hydrodynamic data of such rivers, for example, the upper Columbia and Pearl Rivers. In order to obtain the hydrodynamic parameter values at flow cross-sections of anastomosing rivers, without having to observe hydraulic radius, this study proposes a method called the Expression of Channel Morphological Parameters (ECMP) for hydrodynamic estimation. The calculation formula of the ECMP method is based on the shape factor (width–depth ratio), scale factor (mean depth), and gradient factor of the channel cross-sections of anastomosing rivers below a given water level as independent variables. This method can be used to calculate the mean velocity, discharge, specific stream power, and gross stream power of the flow cross-section at different water levels, only requiring the measurements of channel morphological parameters such as the mean depth, width–depth ratio, and gradient at the channel cross-section below the corresponding water level. The applicability of the ECMP method was verified using measured hydrological data. The results showed that the ECMP method is a practical estimation method with higher accuracy that is convenient for calculating the hydrodynamic parameters of anastomosing rivers. It can also be used to reconstruct ancient anastomosing rivers using the channel morphological parameters revealed from the fill sediments in ancient channels.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3