Multi-Station Hydrological Modelling to Assess Groundwater Recharge of a Vast Semi-Arid Basin Considering the Problem of Lack of Data: A Case Study in Seybouse Basin, Algeria

Author:

Inan Cagri Alperen1,Maoui Ammar2,Lucas Yann1,Duplay Joëlle1ORCID

Affiliation:

1. Institute of Earth and Environment of Strasbourg, University of Strasbourg, 67084 Strasbourg, France

2. Laboratory of Civil Engineering and Hydraulic, University of 8 May 1945, Guelma 24000, Algeria

Abstract

Water resource management scenarios have become more crucial for arid to semi-arid regions. Their application prerequisites rigorous hydrological modelling approaches since data are usually exposed to uncertainties and inaccuracies. In this work, Soil Water Assessment Tool (SWAT), an open source semi-distributed, continuous-time, process-based physical hydrological model is used to model hydrological processes and eventually calculate groundwater recharge estimations in Seybouse basin, Northeast Algeria. The model uses estimated rainfall to calibrate the model with observed discharge from hydrometric stations. Model calibration and validation are performed over four hydrometric stations located in the basin. Uncertainty analysis and sensitivity analysis supported the calibration period. SUFI-2 algorithm is used for uncertainty estimations along with a global sensitivity analysis prior to calibration simulations. Simulated flood hydrographs showed generally good accuracy with few misfits on the peaks. The model obtained satisfactory and consistent calibration and validation results for which the Nash score varied from 0.5 to 0.7 for calibration and from −0.1 to 0.6 for validation and R2 from 0.6 to 0.7 for calibration and 0.03 to 0.8 for validation. Moreover, estimated water budget values show strong similarities with the observed values found in the literature. The present work shows that the rigorously calibrated and validated SWAT model can simulate hydrological processes as well as major high and low flows using estimated rainfall data.

Funder

European Union

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference38 articles.

1. Morante-Carballo, F., Montalván-Burbano, N., Quiñonez-Barzola, X., Jaya-Montalvo, M., and Carrión-Mero, P. (2022). What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water, 14.

2. Numerical modeling of groundwater recharge in a coastal city with multi-layered aquifer systems;Lu;Water Sci. Eng.,2019

3. Global overview of managed aquifer recharge: Regional applications, success stories, and future prospects;Dillon;Hydrogeol. J.,2018

4. Potential impacts of rainwater harvesting on groundwater recharge in a typical basement complex region;Aladenola;J. Afr. Earth Sci.,2016

5. Performance evaluation of permeable reactive barriers for groundwater recharge;Elliott;J. Hydrol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3