Abstract
In this work we study the different phenomena taking place when a hydrostatic pressure is applied in the inner fluid of a suspended microchannel resonator. Additionally to pressure-induced stiffness terms, we have theoretically predicted and experimentally demonstrated that the pressure also induces mass effects which depend on both the applied pressure and the fluid properties. We have used these phenomena to characterize the frequency response of the device as a function of the fluid compressibility and molecular masses of different fluids ranging from liquids to gases. The proposed device in this work can measure the mass density of an unknown liquid sample with a resolution of 0.7 µg/mL and perform gas mixtures characterization by measuring its average molecular mass with a resolution of 0.01 atomic mass units.
Funder
European Research Council
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Ministerio de Ciencia, Innovación y Universidades
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献