A Novel 6500 V SiC Trench MOSFET with Integrated Unipolar Diode for Improved Third Quadrant and Switching Characteristics

Author:

Wu Hao1,Li Xuan1,Deng Xiaochuan1ORCID,Wu Yangyang1,Ding Jiawei1,Peng Wensong2,Zhang Bo1ORCID

Affiliation:

1. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

2. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China

Abstract

A 6500 V SiC trench MOSFET with integrated unipolar diode (UD-MOS) is proposed to improve reverse conduction characteristics, suppress bipolar degradation, and reduce switching loss. An N type base region under the trench dummy gate provides a low barrier path to suppress hole injection during the reverse conduction operation. The reverse conduction voltage VON is reduced to 1.11 V, and the reverse recovery charge (QRR) is reduced to 1.22 μC/cm2. The gate-to-drain capacitance (CGD) and gate-to-source capacitance (CGS) of the UD-MOS are also reduced to improve switching loss due to the thick oxide layer between the trench gate and dummy gate. The proposed device exhibits an excellent loss-related figure of merit (FOM). It provides a high-voltage SiC MOSFET prototype with potential performance advantages for voltage source converter-based high voltage direct current applications.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TCAD-Based Investigation of a 3.3 kV Planar SiC MOSFET: BV-RON Trade-Off Optimization;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3