A Single-Sensor Approach for Noninvasively Tracking Phase Velocity in Tendons during Dynamic Movement

Author:

Schmitz Dylan G.1,Thelen Darryl G.12,Cone Stephanie G.3

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA

2. Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA

3. Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA

Abstract

Shear wave tensiometry is a noninvasive method for directly measuring wave speed as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used broadband excitation pulses and measured the wave travel time between two sensors. In this work, we demonstrate a new method for tracking phase velocity using shaped excitations and measurements from a single sensor. We observed modulation of phase velocity in the Achilles tendon that was generally consistent with wave speed measures obtained via broadband excitation. We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues. The implementation of this method could enhance the use of noninvasive wave speed measures to characterize tendon forces. Further, the approach allows for the design of smaller shear wave tensiometers usable for a broader range of tendons and applications.

Funder

NSF DARE

NIH

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3