Constant Pressure-Regulated Microdroplet Polymerase Chain Reaction in Microfluid Chips: A Methodological Study

Author:

Duanmu Luyang1,Shen Youji2,Gong Ping2,Zhang Hao2,Meng Xiangkai2,Yu Yuanhua12

Affiliation:

1. School of Physics, Changchun University of Science and Technology, Changchun 130022, China

2. School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Digital polymerase chain reaction (PCR) technology in microfluidic systems often results in bubble formation post-amplification, leading to microdroplet fragmentation and compromised detection accuracy. To solve this issue, this study introduces a method based on the constant pressure regulation of microdroplets during PCR within microfluidic chips. An ideal pressure reference value for continuous pressure control was produced by examining air solubility in water at various pressures and temperatures as well as modeling air saturation solubility against pressure for various temperature scenarios. Employing a high-efficiency constant pressure device facilitates precise modulation of the microfluidic chip’s inlet and outlet pressure. This ensures that air solubility remains unsaturated during PCR amplification, preventing bubble precipitation and maintaining microdroplet integrity. The device and chip were subsequently utilized for quantitative analysis of the human epidermal growth factor receptor (EGFR) exon 18 gene, with results indicating a strong linear relationship between detection signal and DNA concentration within a range of 101–105 copies/μL (R2 = 0.999). By thwarting bubble generation during PCR process, the constant pressure methodology enhances microdroplet stability and PCR efficiency, underscoring its significant potential for nucleic acid quantification and trace detection.

Funder

Jilin Scientific and technological Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3