A Two-Dimensional Computer-Aided Design Study of Unclamped Inductive Switching in an Improved 4H-SiC VDMOSFET

Author:

Nie Xinfeng1,Wang Ying1ORCID,Yu Chenghao1,Fei Xinxing2,Yang Jianqun3,Li Xingji3

Affiliation:

1. Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China

2. Yangzhou Marine Electronic Instrument Institute, Yangzhou 225001, China

3. National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology, Harbin 150080, China

Abstract

Due to its high thermal conductivity, high critical breakdown electric field, and high power, the silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) has been generally used in industry. In industrial applications, a common reliability problem in SiC MOSFET is avalanche failure. For applications in an avalanche environment, an improved, vertical, double-diffused MOSFET (VDMOSFET) device has been proposed. In this article, an unclamped inductive switching (UIS) test circuit has been built using the Mixed-Mode simulator in the TCAD simulation software, and the simulation results for UIS are introduced for a proposed SiC-power VDMOSFET by using Sentaurus TCAD simulation software. The simulation results imply that the improved VDMOSFET has realized a better UIS performance compared with the conventional VDMOSFET with a buffer layer (B-VDMOSFET) in the same conditions. Meanwhile, at room temperature, the modified VDMOSFET has a smaller on-resistance (Ron,sp) than B-VDMOSFET. This study can provide a reference for SiC VDMOSFET in scenarios which have high avalanche reliability requirements.

Funder

National R&D Program for Major Research Instruments of China

Basic Research Development Program of Liaoning Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3