Feature Selection of Microarray Data Using Simulated Kalman Filter with Mutation

Author:

Ahmad Zamri Nurhawani1,Ab. Aziz Nor Azlina1,Bhuvaneswari Thangavel1,Abdul Aziz Nor Hidayati1ORCID,Ghazali Anith Khairunnisa1

Affiliation:

1. Faculty of Engineering & Technology, Multimedia University, Melaka 75450, Malaysia

Abstract

Microarrays have been proven to be beneficial for understanding the genetics of disease. They are used to assess many different types of cancers. Machine learning algorithms, like the artificial neural network (ANN), can be trained to determine whether a microarray sample is cancerous or not. The classification is performed using the features of DNA microarray data, which are composed of thousands of gene values. However, most of the gene values have been proven to be uninformative and redundant. Meanwhile, the number of the samples is significantly smaller in comparison to the number of genes. Therefore, this paper proposed the use of a simulated Kalman filter with mutation (SKF-MUT) for the feature selection of microarray data to enhance the classification accuracy of ANN. The algorithm is based on a metaheuristics optimization algorithm, inspired by the famous Kalman filter estimator. The mutation operator is proposed to enhance the performance of the original SKF in the selection of microarray features. Eight different benchmark datasets were used, which comprised: diffuse large b-cell lymphomas (DLBCL); prostate cancer; lung cancer; leukemia cancer; “small, round blue cell tumor” (SRBCT); brain tumor; nine types of human tumors; and 11 types of human tumors. These consist of both binary and multiclass datasets. The accuracy is taken as the performance measurement by considering the confusion matrix. Based on the results, SKF-MUT effectively selected the number of features needed, leading toward a higher classification accuracy ranging from 95% to 100%.

Funder

Ministry of Higher Education

Multimedia University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3