CFD-DEM Simulation of Fast Fluidization of Fine Particles in a Micro Riser

Author:

Wu Guorong1,Li Qiang2,Zuo Zhanfei1

Affiliation:

1. School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404020, China

2. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

Abstract

In recent years, the discrete element method (DEM) has gradually been applied to the traditional fluidization simulation of fine particles in a micro fluidized bed (MFB). The application of DEM in the simulating fast fluidization of fine particles in MFB has not yet received attention. This article presents a drag model that relies on the surrounding environment of particles, namely the particle circumstance-dependent drag model or PCDD model. Fast fluidization in an MFB of fine particles is simulated using DEM based on the PCDD model. Simulations indicate that the local structure in an MFB exhibits particle aggregation, which is a natural property of fast fluidization, forming a structure where a continuous dilute phase and dispersed concentrated phase coexist. There exists a strong effect of solid back-mixing in an MFB, leading to relatively low outlet solid flux. The gas back-mixing effect is, however, not so distinct. The axial porosity shows a monotonically increasing distribution with the bed height but does not strictly follow the single exponential distribution. The solid volume fraction at the bottom of the bed is significantly lower than the correlated value in CFB. The axial heterogeneous distribution of the cross-sectional average porosity in the lower half of the bed is also weakened. The radial porosity shows a higher distribution pattern in the central region and a lower one in the sidewall region.

Funder

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3