Comparison between Air-Exposed and Underground Thermal Energy Storage for Solar Cooling Applications

Author:

Ríos-Arriola Juan1ORCID,Velázquez-Limón Nicolás1ORCID,Aguilar-Jiménez Jesús Armando1ORCID,Islas Saúl1ORCID,López-Sánchez Juan Daniel1ORCID,Caballero-Talamantes Francisco Javier1ORCID,Corona-Sánchez José Armando1ORCID,Cásares-De la Torre Cristian Ascención1ORCID

Affiliation:

1. Centro de Estudio de las Energías Renovables (CEENER), Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico

Abstract

Solar energy is one of the main alternatives for the decarbonization of the electricity sector and the reduction of the existing energy deficit in some regions of the world. However, one of its main limitations lies in its storage, since this energy source is intermittent. This paper evaluates the potential of an underground thermal energy storage tank supplied by solar thermal collectors to provide hot water for the activation of a single-effect absorption cooling system. A simulator was developed in TRNSYS 17 software. Experimentally on-site measured data of soil temperature were used in order to increase the accuracy of the simulation. The results show that the underground tank reduces thermal energy losses by 27.6% during the entire hot period compared with the air-exposed tank. The electrical energy savings due to the reduction in pumping time during the entire hot period was 639 kWh, which represents 23.6% of the electrical energy consumption of the solar collector pump. It can be concluded that using an underground thermal energy storage tank is a feasible option in areas with high levels of solar radiation, especially in areas where ambient temperature drops significantly during night hours and/or when access to electrical energy is limited.

Funder

23a Convocatoria Interna UABC

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3