Performance of Regenerated Activated Carbons on Pesticides Removal from the Aqueous Phase

Author:

Cansado Isabel Pestana da Paixão12ORCID,Mourão Paulo Alexandre Mira1ORCID,Castanheiro José Eduardo dos Santos Félix1ORCID

Affiliation:

1. MED—Mediterranean Institute for Agriculture, Environment and Development & Change—Global Change and Sustainability Institute, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho n° 59, 7000-671 Évora, Portugal

2. LAQVRequimte, Universidade de Évora, Rua Romão Ramalho n° 59, 7000-671 Évora, Portugal

Abstract

Adsorbents presenting high adsorption capacity, fast adsorption rate, easy regeneration, and a good possibility for reusability are ideal for removing 4-chloro-2-methyl-phenoxyacetic acid (MCPA) or other pesticides from wastewater. Here, the effects of regeneration treatments on adsorption–desorption cycles are examined using two commercial activated carbons (ACs) (Merck and Norit 1240 X). MCPA adsorption was fast on Merck and Norit ACs in powder form (6 h) but on Norit AC, in granular form, adsorption was too slow, and the equilibrium time was reached only after 288 h. MCPA adsorption kinetic data were analyzed by applying pseudo-first-order, pseudo-second-order, and Weber–Morris models. The pseudo-second-order model fit better to all data, and the Weber–Morris representation allows confirming that on Norit 1240 X, in granular form, the pore diffusion was the limiting factor concerning the MCPA adsorption. Merck and Norit 1240 X (in powder and granular form) ACs loaded with MCPA were submitted to different regeneration process by washing with distilled water, ethanol, HNO3, and NaOH solutions and washed with NaOH solutions or ethanol followed by a thermal treatment. The ACs regenerated with ethanol performed well in the subsequent adsorption–desorption cycles. All ACs had more than 99% desorbed MCPA after the first cycle of washing with ethanol. The washing with NaOH solution was less efficient. The regeneration process, consisting of washing the sample with a solution of NaOH and subsequent heating at 573 K, was very effective. After this regeneration procedure, the amount of MCPA adsorbed on Norit 1240 X AC was even higher than the amount adsorbed in the first adsorption cycle. At present, washing methods for adsorbent regeneration are not used at an industrial level. However, research for environmentally friendly regeneration methods is necessary to achieve the objectives of the circular economy.

Funder

FCT/MCTES—Portuguese Foundation for Science and Technology

FCT/MCTES from MED & CHANGE Research Centres

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3