Reliable Road Scene Interpretation Based on ITOM with the Integrated Fusion of Vehicle and Lane Tracker in Dense Traffic Situation

Author:

Jeong JinhanORCID,Yoon Yook Hyun,Park Jahng Hyon

Abstract

Lane detection and tracking in a complex road environment is one of the most important research areas in highly automated driving systems. Studies on lane detection cover a variety of difficulties, such as shadowy situations, dimmed lane painting, and obstacles that prohibit lane feature detection. There are several hard cases in which lane candidate features are not easily extracted from image frames captured by a driving vehicle. We have carefully selected typical scenarios in which the extraction of lane candidate features can be easily corrupted by road vehicles and road markers that lead to degradations in the understanding of road scenes, resulting in difficult decision making. We have introduced two main contributions to the interpretation of road scenes in dense traffic environments. First, to obtain robust road scene understanding, we have designed a novel framework combining a lane tracker method integrated with a camera and a radar forward vehicle tracker system, which is especially useful in dense traffic situations. We have introduced an image template occupancy matching method with the integrated vehicle tracker that makes it possible to avoid extracting irrelevant lane features caused by forward target vehicles and road markers. Second, we present a robust multi-lane detection by a tracking algorithm that incudes adjacent lanes as well as ego lanes. We verify a comprehensive experimental evaluation with a real dataset comprised of problematic road scenarios. Experimental result shows that the proposed method is very reliable for multi-lane detection at the presented difficult situations.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Euro NCAP https://www.euroncap.com/en/for-engineers/protocols/safety-assist/

2. Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3