Exploring 2,4,6-Trichlorophenol Degradation Characteristics and Functional Metabolic Gene Abundance Using Sludge Fermentation Broth as the Carbon Source

Author:

Wang Jianguang123ORCID,Li Shiyi13

Affiliation:

1. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China

2. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China

3. Huadong Eco-Environmental Engineering Research Institute of Zhejiang Province, Hangzhou 311122, China

Abstract

The use of sludge fermentation broth (FB) as a co-metabolic carbon source for treating 2,4,6-trichlorophenol (2,4,6-TCP) wastewater is a novel strategy. The key to the feasibility of this strategy is whether the FB can promote the growth of functional microorganisms that are capable of degrading 2,4,6-TCP. This study focused on long-term acclimatized sludge and investigated the impact of key operating parameters such as the sludge FB concentration and the influent concentration of 2,4,6-TCP on the removal efficiency of chlorophenol. The research findings revealed that when the influent concentration of sludge FB exceeded 300 mg COD/L, it significantly inhibited the degradation of 2,4,6-TCP. Simulation experiments using individual VFA components as influent carbon sources showed that excessive propionic acid addition can inhibit the degradation of 2,4,6-TCP, indicating the need to control the concentration of propionic acid in the fermentation conditions. Metagenomic analysis further showed that sludge FB can promote the enrichment of microbial chlorophenol degradation genes, including PcpA, pcaF, pcaI, Mal-r, chqB, and fadA. The abundances of these six chlorophenol degradation genes were as follows: 1152 hits (PcpA), 112 hits (pcaF), 10,144 hits (pcaI), 12,552 hits (Mal-r), 8022 hits (chqB), and 20,122 hits (fadA). Compared with other types of carbon sources, sludge FB demonstrates distinct advantages in terms of leading to the highest chlorophenol degradation concentration and the abundance of functional microbial communities. This study has successfully demonstrated the feasibility of using sludge FB as a co-metabolic carbon source for the degradation of 2,4,6-TCP.

Funder

the scientific program of PowerChina Huadong Engineering Corporation Limited

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3