Effects of Different Carbon and Nitrogen Ratios on Nitrogen Removal Efficiency and Microbial Communities in Constructed Wetlands

Author:

Bai Xueyuan123,Li Jianwei3,Chang Sheng1

Affiliation:

1. State Environmental Protection Key Laboratory of Drinking Water Source Protection, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. School of Engineering, Jilin Normal University, Siping 136000, China

3. State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130117, China

Abstract

Amidst rapid urbanization, municipal wastewater treatment plants remain a significant source of nitrogen compounds, which stems from their effluents. Constructed wetlands, employing denitrification processes, have been proven effective at nitrogen removal. Variations in influent nutrient concentrations are often seen as limiting factors affecting nitrogen removal and influencing microbial communities. This study evaluates the impact of nutrient limitation on nitrogen removal by analyzing changes in microbial communities within constructed wetlands under different influent water C/N ratios. The findings indicate that both excessively high and low C/N ratios constrain nitrogen decomposition, with optimal nitrogen removal observed at C/N ratios of 6 or 7. Moderate C/N values (6–7) support diverse and stable microbial networks, ensuring treatment system stability. Microorganisms play a pivotal role in nitrogen transformation, with the nirk gene being crucial for NH4+−N conversion, while the AOA gene dominates NO2−−N and TN conversion. This study offers practical guidance for identifying a suitable C/N ratio for wastewater treatment and establishes a theoretical foundation for regulating nitrogen removal by microbial communities in constructed wetlands within nitrogen removal systems.

Funder

Open Research Fund of State Environmental Protection Key Laboratory of Drinking Water Source Protection, the Chinese Research Academy of Environmental Sciences

Fundamental Research Funds for the Central Public-interest Scientific Institution

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3