Predicting the External Corrosion Rate of Buried Pipelines Using a Novel Soft Modeling Technique

Author:

Ren Zebei1ORCID,Chen Kun12ORCID,Yang Dongdong1,Wang Zhixing12,Qin Wei3

Affiliation:

1. College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

2. Chongqing Key Laboratory of Oil and Gas Production Safety and Risk Control, Chongqing 401331, China

3. Chongqing Gas District, PetroChina Southwest Oil and Gasfield Company, Chongqing 400021, China

Abstract

External corrosion poses a significant threat to the integrity and lifespan of buried pipelines. Accurate prediction of corrosion rates is important for the safe and efficient transportation of oil and natural gas. However, limited data availability often impacts the performance of conventional predictive models. This study proposes a novel composite modeling approach integrating kernel principal component analysis (KPCA), particle swarm optimization (PSO), and extreme learning machine (ELM). The key innovation lies in using KPCA for reducing the dimensionality of complex input data combined with PSO for optimizing the parameters of the ELM network. The model was rigorously trained on 12 different datasets and comprehensively evaluated using metrics such as the coefficient of determination (R2), standard deviation (SD), mean relative error (MRE), and root mean square error (RMSE). The results show that KPCA effectively extracted four primary components, accounting for 91.33% of the data variability. The KPCA-PSO-ELM composite model outperformed independent models with a higher accuracy, achieving an R2 of 99.59% and an RMSE of only 0.0029%. The model comprehensively considered various indicators under the conditions of limited data. The model significantly improved the prediction accuracy and provides a guarantee for the safety of oil and gas transport.

Funder

Natural Science Foundation of Chongqing

the Scientific and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3