LCAS-DetNet: A Ship Target Detection Network for Synthetic Aperture Radar Images

Author:

Liu Junlin1ORCID,Liao Dingyi1,Wang Xianyao1,Li Jun123,Yang Bing2,Chen Guanyu2

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China

2. Agricultural Information Engineering Higher Institution Key Laboratory of Sichuan Province, Ya’an 625000, China

3. Ya’an Digital Agricultural Engineering Technology Research Center, Ya’an 625000, China

Abstract

Monitoring ships on water surfaces encounters obstacles such as weather conditions, sunlight, and water ripples, posing significant challenges in accurately detecting target ships in real time. Synthetic Aperture Radar (SAR) offers a viable solution for real-time ship detection, unaffected by cloud coverage, precipitation, or light levels. However, SAR images are often affected by speckle noise, salt-and-pepper noise, and water surface ripple interference. This study introduces LCAS-DetNet, a Multi-Location Cross-Attention Ship Detection Network tailored for the ships in SAR images. Modeled on the YOLO architecture, LCAS-DetNet comprises a feature extractor, an intermediate layer (“Neck”), and a detection head. The feature extractor includes the computation of Multi-Location Cross-Attention (MLCA) for precise extraction of ship features at multiple scales. Incorporating both local and global branches, MLCA bolsters the network’s ability to discern spatial arrangements and identify targets via a cross-attention mechanism. Each branch utilizes Multi-Location Attention (MLA) and calculates pixel-level correlations in both channel and spatial dimensions, further combating the impact of salt-and-pepper noise on the distribution of objective ship pixels. The feature extractor integrates downsampling and MLCA stacking, enhanced with residual connections and Patch Embedding, to improve the network’s multi-scale spatial recognition capabilities. As the network deepens, we consider this structure to be cascaded and multi-scale, providing the network with a richer receptive field. Additionally, we introduce a loss function based on Wise-IoUv3 to address the influence of label quality on the gradient updates. The effectiveness of our network was validated on the HRSID and SSDD datasets, where it achieved state-of-the-art performance: a 96.59% precision on HRSID and 97.52% on SSDD.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3